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,4/mtract-Thk paper presents a complete anafysis for a system of

Iinear, homogeneous, andisotropic dielectric posts inarectangnlar wave-

guide. These posts are assumed uniform along the narrow side of the

waveguide, but are otherwise of arbitrary cross section and thickness. The

scattering and impedance matrices describing the effect of the posts on the

dominant waveguide mode are derived. The latter is then realized as a

two-port T-network. A moment procedure is devised and applied to a set of

test problems with a wide variety of post configurations to compnte the

scattering parameters and equivalent network elements. The accuracy and

convergence aspects of the nmnericaf solution are also investigated. The

branch and network resonances are determined for some post configura-

tions.

1. INTRODUCTION

c ONSIDER a system of dielectric posts Pl, P2, -0 “ ,Pp
in a rectangular waveguide. These posts are assumed

uniform along the narrow side of the waveguide, but are

otherwise of arbitrary cross section and thickness. The

waveguide medium is assumed linear, homogeneous, iso-

tropic, and dissipation free, and is therefore characterized

by the real scalar constitutive parameters (p, c). The di-

electric posts are likewise linear, homogeneous, and iso-

tropic, although not necessarily free from losses, and are

therefore characterized by the constitutive parameters

(P, cm), where cm, m =1,2,..., p, are complex SCalZUX.The

problem considered is shown in Fig. 1. The solution in-

volves determining the equivalent network describing the

effect of the posts on the dominant waveguide mode.

Over the past few years, the study of inductive metallic

posts in a rectangular waveguide has been an area of active

research. A solution for a system of inductive posts of

arbitrary cross section and thickness was given by Auda

and Barrington [1]. Leviatan, Li et al. [2], [3] reported

solutions for single and multiple posts of circular cross

section. Less attention, however, has been paid to the

study of dielectirc posts, despite its theoretical and practi-

cal significance. In essence, metallic posts are the limiting

case of the dielectric ones as the imaginary parts of the

dielectric constants tend to – co. Furthermore, the dielec-

tric posts, unlike the metallic ones, are very resonant

structures. The study of the resonance phenomenon is

therefore an important part in the analysis of dielectric

posts. On the practical side, ceramic dielectrics with high

dielectric constant and temperature stability have now
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become available commercially. This has made it possible

LO replace many bulky and expensive waveguide resonant

cavities in the design of microwave filters and highly stable

qicrowave oscillators by low-cost miniature dielectric res-

onators [4]. Dielectric posts can be used in such applica-

tions as well, in particular, in situations where high power

handling capability is required.

The literature on dielectric posts in a rectangular wave-

guide is scarce, with almost all existing solutions dealing

exclusively with the problem of a single centered post of

circular cross section. Schwinger was the, first to solve the

single centered circular post problem using his celebrated

variational method [5, ch. 2]. Although ingenious and’

powerful, the application of the method was limited to

posts of small radii and relatively low per~ttivities. The

few data collected can be found in Marcuvitz’s Wauegzdde
Handbook [6, sec. 5-12]. Araneta et al. [7] recently at-

tempted to improve on Schwinger’s results by incorporat-

ing one more trial term in the variational expressions for

the network parameters. They also provided conditions for

the permittivity for which the branches of the equivalent

network become resonant. Modal field expansion and

matching of boundary conditions were utilized by Ikegami

[8] and Cicconi and Rosatelli [9] to solve for a centered

circular post of plasma with a parabolic dielectric suscep-

tibility profile. Nielsen [10] used the modal expansion

method to treat the problem of a centered circular homo-

geneous plasma post covered with a dielectric. It has

recently come to our knowledge that Leviatan and

Scheaffer are currently considering solutions for systems of

dielectric posts [11]. Their approach is a generalization of

the method in [2], and appears to have the same merits of

convergence and accuracy.

This paper presents a complete analysis for the system

of dielectric posts. A volume integral field equation for the
equivalent polarization current for each post is derived,

and is later solved numerically using a subsectional point-

matching moment procedure. The scattering and impeda-

nce matrices describing the effect of the posts on the

dominant waveguide mode are obtained in terms of the

equivalent currents. The latter is then realized in the form

of a two-port T-network using standard microwave net-

work theory. The moment procedure is used to compute

the scattering parameters and equivalent network elements

for a wide variety of post configurations, thereby providing

a large set of design data that have not been available

0018-9480/86/0800-0883$01.00 Q1986 IEEE



884 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 8, AUGUST1986

t
Y

Pp

F-a--l

t
x’

Kc’
c . .

CD=Sp$i s’

Fig. 1. [p] uniform dielectric posts in a rectangular waveguide.

before. Resonances are then determined from the data

obtained.

The organization of the paper is as follows. A complete

field analysis leading to the integral equation for the

equivalent currents is presented in the next section. The

scattering matrix of the posts is obtained in Section III

followed by the derivation of the equivalent network in

Section IV. The numerical solution of the integral equation

and evalution of matrix elements are considered, respec-

tively, in Sections V and VI, and some of the results

obtained are given in Section VII. In Section VIII, the

resonances are defined and determined for some post

configurations.

II. BASIC FOrmUlatiOn

Let a dominant waveguide mode of unit amplitude be

incident on the posts from the left. This mode has only a

y-component of electric field given by [12, sec. 4-3]

()E;= sin ‘x e-~’z
a

(1)

where

J
In (2), K is the wave number of the waveguide medium,

and A is its wavelength. Furthermore, it is assumed that
a < A < 2a, so that only the dominant mode can propagate

in the waveguide.

Since each post is uniform along the y-axis, and since

the exciting mode has only a y-component of electric field

that does not vary with y, so does the scattered field. The

only higher-order modes excited are therefore TEmO to z

modes since these are the only waveguide modes having

only a y-component of electric field that does not vary

with y. Furthermore, the electric polarization vector asso-

ciated with the m th post P ‘“ has only a y-component

given by [13, sec. 1-6]

Pyrn= CO(C; – q)E; = – jtipco(~~– C,)+m (3)

where co is the permittivity of a vacuum, 67 is the relative

permittivity or dielectric constant, and E: and @’” are the

y-components, respectively, of the electric field and mag-

netic vector potential inside the post. The effect of PM on

the incident mode can then be completely accounted for

by an equivalent distribution of electric polarization cur-

rent of density

(.1)2

()
JY* = juPym= ~ (cY– tr)& (4)

where co = 2.997925X108 m/s is the velocity of light in a

vacuum.

Let the dominant mode be incident in the waveguide,

while the posts are replaced by U j = ~+Y~.(As can be seen,

the problem is basically a two-dimensional scalar one that

can be entirely worked out in some constant y-plane

within the waveguide. Henceforth, all source and field

points are assumed located in such a plane.) The field

scattered in the waveguide is then identical with the field

produced by the polarization currents and can therefore be

determined in terms of these currents using the Green’s

function for TE~O to z modes in a rectangular waveguide.

Thus,

()
E;=- jtip ~ 2~(c~–cr)

1=1

.~y’(xJ,z)G(x,z,xJ,z)ds (5)

where

Iml

()
G(x, zIx’, z’) = ; ~1 ;sin n~x

n-

()

77
,Sin ~—xt e–YnlZ–z’l

a
1

(6)

yn=J2p J
is the Green’s function for the TE.O to z modes [14, sec.

5-6], and the integration is taken over the cross section

area St of PI (S[ = C’ and ds’ = dl’ for any Pi of zero

thickness). Inside each S“, however, the total electric field,

incident plus scattered, must be equal to Eyrn:

~ , (X, z)esm, nZ=l,2,..., p. (7)E;+E;=E”

Consequently

()

%’
sin –x e-Y’z

a

=-jtip(+m(xz)-(~~

)“ ,~l(’h)~$(x’,z’)G(x, zIx’, Z’) ds’ ,

(x, z) GS~, m=1,2,..., p (8)

which is the required integral equation for @l through oP.
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The higher order (n> 1) modes excited are evanescent,

i.e., decay exponentially with distance from the posts.

Thus, at sufficiently large distances, only the dominant

(n= 1) mode can exist in the waveguide. The reflection

coefficient of the dominant mode is readily found from (l),

(5), and (6) as

r=– ()J; ‘: 2i’ (+%)
/=1

The transmission coefficient of the dominant mode is then

~$’(~’,z’)sin(~x’)e’,z’fi’.(10)

III. THE SCATTERING MATRIX

Following Montgomery et al. [15, sec. 5-14], the scatter-

ing matrix of the posts is defined as

(11)

In (11), Sll and S21 are, respectively, the amplitudes of the

dominant waveguide mode reflected to the left and trans-

mitted to the right of the posts. Thus, Sll and S21 are

given by (9) and (10), respectively.

Similarly, S22 and Slz are, respectively, the reflection

and transmission coefficients of a dominant waveguide

mode incident on the posts from the right. This mode has

only a y-component of electric field, which is given by

(12)

The previous analysis carried through in this case. Thus,

the electric field scattered in the waveguide is given by (5)

where # through $P are now determined by solving the

integral equation

()

T
sin —x eYiz

a

(x, z) Gsm, m=l,2,..., p. (13)

The scattering parameters S22 and S12 are then given by

()jupto ’p
S22=– — — ,;l(+%)

a yl co

~y’(x’z’)sin(:x’)e’,”~’(14

-~$[(x’,z’)sin( ~x’)e-’z’d~’. (15)

IV. THE EQUIVALENT NETWORK

Let dominant waveguide modes of arbitrary amplitudes

c1 and C2 be incident on the posts from the left and from

the right, respectively. Far from the posts, only the same

mode can exist. The z-transverse field in the waveguidle at

sufficiently large distances can then be written as [12, sec.

8-1]

E=

H=

In (16)

Vl(z)el Z<<o

V2(z)el Z>>o

~l(z)a,xel z<<O

z2(z)az Xe1 z>>O

(16)

VI,2(Z) = V.2e-y’z + Vl;2ey’z

}

(17)
11,2(z) = 1~2e-Y’z – 11:2eY’z

where

V1- = – ‘qlll- = clsll + c2si2

V; = qlI; = C1S21+ C2S22
}

(18)

V*- = – qll; = c’ )
are the mode voltages and currents, and

01

7?
el= sin —x ay

a
(19)

are the mode vector and characteristic impedance of the

dominant waveguide mode, respectively.,

Let,( Vl, II) and (V2, 12) be, respectively, the amplitudes

of ( Ey, – Hx) far to the left and to the right of the posts
extrapolated back to the z = O plane. It then follows from

(16) through (18) that (Vl, V2) and (Zl, 12) are related to

(cl, C2) through the matrix equations

?d=(u+s)r

qlid=(u–s)? }

(20)

where

and U is the identity matrix. The impedance matrix of the

posts Z is then defined by [15, sec. 5-9]

Z?d = Vd. (22)
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“w
Fig. 2. The equivalent network of the posts.

Consequently

Z= T1(U+S)(U-S)-’=[:: ;:] (23)

since i?is completely arbitrary.

As can be seen, the effect of the posts on the dominant

waveguide mode at far points can be described by two

transmission lines of characteristic impedance ql. The

voltage and current waves on the transmission lines are

given by (17) and (18) and are produced by voltage genera-

tors with voltages c1 and C2 matched to the waveguide. At

z = O, however,

are related by the impedance matrix Z, a fact that mani-

fests itself in the presence of a two-port T-network con-

necting the two lines there. For an incident dominant

mode from the left only, the equivalent network reduces to

that shown in Fig. 2.

V. SOLUTION OF THE INTEGRAL EQUATION

The integral equation (8) can be written in the operator

form

v=+”’+ f D((#l), m=l,2,. ... p (25)
{=1

where

1

()

IT
v=–— sin —x e–Yl=

jup a 1

1(x, z)= sm.

(26)

An exact solution of (25) can be rarely obtained, and an

approximate solution has then to be sought.

Let each Crn be approximated by a polygon Xm, and put

qm
~.= UA; (27)

k=l

where ~m is the polygonal cross section of Pm defined by

Zm, and At denote simplexes (triangles in a two-dimen-
sional space and line segments in a one-dimensional space),

t

x

Fig. 3. Modeling of the posts by simplexes.

as shown in Fig. 3. Put

qm
+“ = ~ a~+;. (28)

k=l

In (28), each +? is a function, yet to be specified, that is

defined on A? and vanishes on A~+~, and a; are coeffi-

cients to be determined.

Substituting (28) into (25), there results

{

J“=fx:/ky+ f ~ ++#S;)+r,
[Zlj=l

(x, z)=A~, m=l,2, ”””, p, k=l,2, ””c, qm. (29)

The integration in (29) is taken over A\ rather than S1, and

r is a residual term. A point-matchmg solution [16, sec.

1-4] is obtained by requiring that

r(x:, z:)=o (30)

for some (x:, z:) = At. Taking (30) into consideration,

(29) then becomes
=.
ZI = ~. (31)

In (31), ~ and ~ are p-segment vectors whose nzth and lth

segments are, respectively, the q n x 1 and ql x 1 vectors

and ~ is a p x p block matrix whose mlth block is the

q ‘“ X q’ matrix

A point-matching solution of (13) can be obtained in a

similar manner. Clearly, using the same functions ~: for

expansion, there results a matrix equation fo~ the coeffi-

c~ents of expansion similar to (31), but with – V* replacing

V, where “ *” denotes complex conjugate.

VI. EVALUATION OF MATRIX ELEMENTS

The evaluation of matrix elements constitutes the major

portion of the work involved in the numerical solution. An

efficient evaluation of the elements of the moment matrix

is therefore necessary for the success of the solution.
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A typical element in the moment matrix is given by

‘)+ W’~,@;(x’, z’)G(x:, zflX’, Z’) ds’Z;’=+; (xg’, zk
J

(35)

where W[ is a constant that can be identified from (26),

and +;. are yet to be specified. A particularly simple choice
for 1#$is

+;(X, Z)=
{

1 if (x, z) =A~.
(36)

O otherwise

which corresponds to a pulse expansion of the polarization

currents. Furthermore, the matching points are taken to be

the centroids of the triangles and/or the midpoints of the

line segments. Thus,

J
Z;!= 8#~j + @ G(x:, z~&’, z’) ds’ (37)

A:

where 8~j is the Kronecker delta function (one if k = j
and zero if k # j).

The evaluation of the matrix element proceeds by writ-

ing G in the form [1]

G= Gd+G. +GC. (38)

In (38)

where

887

terms and can therefore be directly summed at a minimal

cost [1].

The evaluation of the matrix element is completed by

integrating the Green’s function, as given by (38), numeri-

cally, where appropriate quadrature rules can be used.

When evaluating any diagonal element, however, the static

component of G. offers a logarithmic singularity that

requires particular attention. Put

G,= G,, +( G~-G,.) =G,, +G,P (41)

where

G~, (x:, ZflX’, Z’)

. (~–&log : (x; – X’)2+ (Z: – 2’)2
)

(42)

is the singular part of G.. G,. is readily integrated over a

simplex to give [17]

J(G,, X:, Z:IX’, Z’) ds’
A~

‘tan-w-+ (43)

Gd(x:, ZflX’, Z’) = +Sin(:xfl)sin(:x’)e-’”-]
1

[

( )(
J%+x’))cosh ‘(Z: – Z’) –COS Z

a
G.(x:, Z:IX’, Z’) = ~ 10$j

( )(
Jw-x’))cosh ‘(Z~ – Z’) ‘COS 3

a

‘ “(:x4sin(:x’)e-n/a’zr-z”Gc(xf, z~lx’, z’) = –; sm

if A~ is a triangle, and

(39)

\
‘r=m=~~~=;Pn7 ’22 are defined in Fig. 4. G,p has ~0 singularity and

if AT is a line segment of length Lm The quantities in

(40)
therefore be integrated over A? using quadrature.

and “log” denotes natural logarithm. The decomposition

(38) amounts to expressing the dynamic Green’s function VII. NUMERICAL RESULTS

G in terms of a dominant mode wave Gd, the correspond- A user-oriented computer code has been written

,/

(43)

can

and
ing static Green’s function G,, plus a correction series G=. applied to a large set of test problems with a wide variety
The correction series is dominated by an exponentially of post configurations. Only a few of the results obtained

convergent series of positive monotonically decreasing for-circular p&.ts free from-losses and located in a rectan-
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G,p at this node. At the centroid of A;, G,P is readily

evaluated asF“i-- ---------”-;LEME:T~
.....-.8——.48

60

X WGHB
A

il 1 ( ~(:+ ’45)G,p(x:, zglx:, z:) = ~log 2sm

The scattering parameters and the elements of the equiv-

alent network are basically the quantities to be computed.

In the course of computation, a large array of testing

procedures are conducted. Because of the approximations

involved in the numerical solution, the scattering matrix

need no longer be symmetric, nor is it necessarily unitary

for posts that are free from losses. The unitary condition

has been found satisfied to within an error of magnitude

0(10 - 14) for a double precision arithmetic mode of oper-

ation, while ISzl – Slz I has always been 0(10 – 7). Further-

more, the results obtained compare very well with the data

in the Waueguide Handbook (WGHB) [6] where they are

accurate, i.e., away from any resonances, as can be readily

seen from Figs. 5 and 6. It is interesting to note that the

solution converges rather quickly up to the first resonance

with only a few triangular elements needed. This has been

observed to be true for circular posts of diameter d < 0.15a.

I
0.000 I 1 I I I 1 I 1 I I

0.0 50.0 100.8 150,0 200. e 2s’

.Sr

8

Fig. 6. The convergence of the moment procedure for a centered cir-
cular post of diameter d = 0.15a. A = 1.4a.

gular waveguide whose medium is the vacuum (c= CO) are

given in this section. More results can be found in [18].

The actual computations follow the evaluation steps in

Section VI. The numerical integration is carried out using

third-order closed Silvester quadrature for integration over

simplexes [19]. In a one-dimensional space, they become

the familiar Newton–Cotes quadrature. One of the nodes

for this particular order, however, is located at the centroid

of the simplex, which necessitates a careful evaluation of
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A reasonably accurate evaluation of the first resonance for

such posts is therefore possible with only about eight

elements. More elements, however, are needed to accu-

rately determine higher-order resonances.

Fig. 7 displays the change of ISIII with c, for centered

posts of diameter d = 0.05a, O.la, 0.15a, and 0.20a. The

change of IZi. I with frequency for the same posts is shown

in Fig. 8. The branch reactance for centered posts of

diameter d = 0.05a, O.la, and 0.15u are plotted versus c,

in Figs. 9 and 10, and versus frequency in Figs. 11 and 12

for a centered post of diameter d = 0.15u. The change of

IS’lll, IS,II, and lZi~l for a post of diameter d = 0.15u with

location is shown in Fig. 13. Finally, the change of the

scattering parameters and network reactance with
frequency for a symmetric triple-post configuration with

varied diameters is shown in Figs. 14, 15, and 16. In these

figures, e, changes between 2.0 and 200.0 with increments

of 1.0 for A = 1.4a, and frequency changes between 1.lfC1

and 1.9fC1 with increments of 0.01 fcl for c,= 38.0, where

f=, is the cutoff frequency of the dominant waveguide

mode. Thus, a total of 200 points is included in each curve

in Figs. 5–7, 9, and 10, and a total of 81 points is included

in Figs. 8, 11, 12, and 14–16. Furthermore, a total of 181

points is included in each curve in Fig. 13, the majority of

which are taken close to the waveguide walls.

VIII. RESONANCE

The dielectric posts are very resonant structures. These

resonances are conveniently characterized by the quality

factor of the posts. The quality factor is defined as

total energy stored inside and outside the posts
Q=a

total power lost

(46)

In (46), the total power lost is the sum of that due to

heating caused by the nonvanishing conductivity of the

posts and the power carried by the scattered dominant

waveguide mode. The quality factor is therefore a positive

continuous function of all the parameters involved in (46).

The values of any parameter for which Q is maximum are

called resonances. This definition differs from that ad-

vanced by Richtmyer [20], which considers only the energy

stored inside the posts. The difference is actually in the

interpretation of the meaning of stored energy. The defini-

tion as given in (46) allows using the matrix representa-

tions of the posts since they incorporate the energy stored

inside the posts as well as that stored in the evanescent

higher-order modes outside the posts. The resonances can

then be readily computed from the IZin I curves in a

manner similar to that which is normally followed in

network theory. As an example, the resonant frequency for

a centered dielectric post of diameter d = 0.15a and dielec-

tric constant c,= 38.0 is readily found from Fig. 8 to be

1.65fC1. Other parameters can also be determined for this

post. For instance, a bandwidth of O.llfCl and a loaded

quality factor of 15.31 are readily computed. The corre-

sponding numbers for a centered post of diameter d =
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0.20a and the same dielectric constant are 1.21fcl, 0.07~Cl,

and 17.44, respectively.

Other types of resonance may also occur, namely, branch

resonances. Such resonances can be determined from the

data obtained as well. As a matter of fact, branch reso-

nances occur whenever post resonances exist, and at the

same frequency or permittivity, or in the close vicinity of

it. For instance, the series branch for a centered circular

post of diameter d = 0.15a is antiresonant at ~ = 1.65~Cl

and c,= 38.0. An examination of Fig. 8 against Fig. 12

further confirms this assertion. Care, however, should be

exercised when identifying the branch resonances. The

reactance X. of the same post shown in Fig. 11 has no

resonances since it does not obey Foster’s theorem where

the irregularity occurs.

Some of the dielectric posts exhibit frequency filtering

characteristics near resonances. The determination of reso-

nances for different configurations therefore allows for the

design of new types of microwave filters. Equally iti-

portant is the investigation of methods for resonating

nonresonant structures. One method, readily suggested by

the results presented, is to utilize other posts to resonate

nonresonant posts. For instance, a centered circular post

of diameter d = O.10a and c,= 38.0 is not resonant, but

can be made so by placing two posts of diameter d = 0.05a
and the same dielectric constant symmetrically about it, as

can be seen from Figs. 14 and 15. Because of the typically

low quality factor for the posts, however, such setups may

not be used in filter design as they stand. Methods for

Q-enhancement and filter design using dielectric posts are

the subject of a coming paper.

IX. SUMMARY

A complete field analysis of a system of dielectric posts

in a rectangular waveguide has been given. A user-oriented

computer program has been written and applied to a large

set of problems with a wide variety of post configurations,

thereby providing a large set of design data that have not

been available before.
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