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Multiple Dielectric Posts in a
Rectangular Waveguide

CHUNG-I G. HSU AND HESHAM A. AUDA, MEMBER, IEEE

Abstract —This paper presents a complete analysis for a system of
linear, homogeneous, and isotropic dielectric posts in a rectangular wave-
guide. These posts are assumed uniform along the narrow side of the
waveguide, but are otherwise of arbitrary cross section and thickness. The
scattering and impedance matrices describing the effect of the posts on the
dominant waveguide mode are derived. The latter is then realized as a
two-port T-network. A moment procedure is devised and applied to a set of
test problems with a wide variety of post configurations to compute the
scattering parameters and equivalent network elements. The accuracy and
convergence aspects of the numerical solution are also investigated. The
branch and network resonances are determined for some post configura-
tions.

I. INTRODUCTION

ONSIDER a system of dielectric posts P!, P2 -+« P?
C in a rectangular waveguide. These posts are assumed
uniform along the narrow side of the waveguide, but are
otherwise of arbitrary cross section and thickness. The
waveguide medium is assumed linear, homogeneous, iso-
tropic, and dissipation free, and is therefore characterized
by the real scalar constitutive parameters (g, ¢). The di-
electric posts are likewise linear, homogeneous, and iso-
tropic, although not necessarily free from losses, and are
therefore characterized by the constitutive parameters
(p,€™), where €™, m=1,2,..., p, are complex scalars. The
problem considered is shown in Fig. 1. The solution in-
volves determining the equivalent network describing the
effect of the posts on the dominant waveguide mode.
Over the past few years, the study of inductive metailic
posts in a rectangular waveguide has been an area of active
research. A solution for a system of inductive posts of
arbitrary cross section and thickness was given by Auda
and Harrington [1]. Leviatan, Li ez al. [2], [3] reported
solutions for single and multiple posts of circular cross
section. Less attention, however, has been paid to the
study of dielectirc posts, despite its theoretical and practi-
cal significance. In essence, metallic posts are the limiting
case of the dielectric ones as the imaginary parts of the
dielectric constants tend to — co. Furthermore, the dielec-
tric posts, unlike the metallic ones, are very resonant
structures. The study of the resonance phenomenon is
therefore an important part in the analysis of dielectric
posts. On the practical side, ceramic dielectrics with high
dielectric constant and temperature stability have now
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become available commercially, This has made it possible
to replace many bulky and expensive waveguide resonant
cavities in the design of microwave filters and highly stable
microwave oscillators by low-cost miniature dielectric rea-
sonators [4]. Dielectric posts can be used in such applica-
tions as well, in particular, in situations where high power
handling capability is required.

The literature on dielectric posts in a rectangular wave-
guide is scarce, with almost all existing solutions dealing
exclusively with the problem of a single centered post of
circular cross section. Schwinger was the first to solve the
single centered circular post problem using his celebrated
variational method [5, ch. 2]. Although ingenious and
powerful, the application of the method was limited to
posts of small radii and relatively low permittivities. The
few data collected can be found in Marcuvitz’s Waveguide
Handbook [6, sec. 5-12). Araneta et al. [7} recently at-
tempted to improve on Schwinger’s results by incorporat-
ing one more trial term in the variational expressions for
the network parameters. They also provided conditions for
the permittivity for which the branches of the equivalent
network become resonant. Modal field expansion and
matching of boundary conditions were utilized by Ikegami
[8] and Cicconi and Rosatelli [9] to solve for a centered
circular post of plasma with a parabolic dielectric suscep-
tibility profile. Nielsen [10] used the modal expansion
method to treat the problem of a centered circular homo-
geneous plasma post covered with a dielectric. It has
recently come to our knowledge that Leviatan and
Scheaffer are currently considering solutions for systems of
dielectric posts [11]. Their approach is a generalization of
the method in 2], and appears to have the same merits of
convergence and accuracy.

This paper presents a complete analysis for the system
of dielectric posts. A volume integral field equation for the
equivalent polarization current for each post is derived,
and is later solved numerically using a subsectional point-
matching moment procedure. The scattering and imped-
ance matrices describing the effect of the posts on the
dominant waveguide mode are obtained in terms of the
equivalent currents. The latter is then realized in the form
of a two-port T-network using standard microwave net-
work theory. The moment procedure is used to compute
the scattering parameters and equivalent network elements
for a wide variety of post configurations, thereby providing
a large set of design data that have not been available
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Fig. 1. [p] uniform dielectric posts in a rectangular waveguide.
before. Resonances are then determined from the data
obtained.

The organization of the paper is as follows. A complete
field analysis leading to the integral equation for the
equivalent currents is presented in the next section. The
scattering matrix of the posts is obtained in Section III
followed by the derivation of the equivalent network in
Section IV. The numerical solution of the integral equation
and evalution of matrix elements are considered, respec-
tively, in Sections V and VI, and some of the results
obtained are given in Section VII. In Section VIII, the
resonances are defined and determined for some post
configurations.

II. Basic FORMULATION

Let a dominant waveguide mode of unit amplitude be
incident on the posts from the left. This mode has only a
y-component of electric field given by [12, sec. 4-3]

(1)

. 7T —
Ey’=s1n —x|e M
a

where

2 2 7\2
JA =J (a)

@)
___w‘/““

In (2), « is the wave number of the waveguide medium,
and A is its vavelength. Furthermore, it is assumed that
a < A <2a, so that only the dominant mode can propagate
in the waveguide.

Since each post is uniform along the y-axis, and since
the exciting mode has only a y-component of electric field
that does not vary with y, so does the scattered field. The
only higher-order modes excited are therefore TE,, to z
modes since these are the only waveguide modes having
only a y-component of electric field that does not vary
with y. Furthermore, the electric polarization vector asso-
ciated with the mth post P™ has only a y-component
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given by [13, sec. 1-6]

Pym=€0(€:n_€r)Eym=_jwp‘eo(e;n—er)qu (3)

where €, is the permittivity of a vacuum, € is the relative
permittivity or dielectric constant, and E)” and ¢™ are the
y-components, respectively, of the electric field and mag-
netic vector potential inside the post. The effect of P™ on
the incident mode can then be completely accounted for
by an equivalent distribution of electric polarization cur-
rent of density

© 2
sp=jor= (2 @-a)er @
0

where ¢, = 2.997925x10% m/s is the velocity of light in a
vacuum.

Let the dominant mode be incident in the waveguide,
while the posts are replaced by U£,=1Jy”‘. (As can be seen,
the problem is basically a two-dimensional scalar one that
can be entirely worked out in some constant y-plane
within the waveguide. Henceforth, all source and field
points are assumed located in such a plane.) The field
scattered in the waveguide is then identical with the field
produced by the polarization currents and can therefore be
determined in terms of these currents using the Green’s
function for TE,  to z modes in a rectangular waveguide.
Thus,

2) £ (e-e)

Ei=— jwu(
’ Co/ i=1

. f ¢'(x',2)G(x, z|x", ') ds’ (5)
Sl

2% ("Zx)

W #
n n—-x = Ynlz 2’|
a

is the Green’s function for the TE,, to z modes [14, sec.
5-6], and the integration is taken over the cross section
area S’ of P! (S'=C' and ds’=dl’ for any P’ of zero
thickness). Inside each S$™, however, the total electric field,
incident plus scattered, must be equal to EJ™:

where

G(x,z|x',2) =

Ql»—l

(6)

El+Ej=E”, (x,z)e€8", m=12,--,p. (7)
Consequently
k23
sin(—x)e""z
a

(el e,)f ¢'(x', 2')G(x, z|x’, 2’) ds’) ,
S[

(x,z2)es™, m=1,2,---,p (8)
which is the required integral equation for ¢! through ¢~.
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The higher order (n>1) modes excited are evanescent,
ie., decay exponentially with distance from the posts.
Thus, at sufficiently large distances, only the dominant
(n=1) mode can exist in the waveguide. The reflection
coefficient of the dominant mode is readily found from (1),
(5), and (6) as

r-- 222V 5 (-0

av, =1

-fzpl(x’, z')sin(zx’)e'“z'ds'. 9
s a

The transmission coefficient of the dominant mode is then

T=1—’¥“ﬁ(i°—)2f(e£—e,)

=1

' T
-/¢’(x’,z’)sin(-x’)e*‘z'ds’. (10)
s’ a

III. THE SCATTERING MATRIX

Following Montgomery et al. [15, sec. 5-14], the scatter-
ing matrix of the posts is defined as

Sll S12
S [521 Szz]' (11)
In (11), S;; and §,, are, respectively, the amplitudes of the
dominant waveguide mode reflected to the left and trans-
mitted to the right of the posts. Thus, §;; and S,; are
given by (9) and (10), respectively.
Similarly, S,, and §,, are, respectively, the reflection
and transmission coefficients of a dominant waveguide

mode incident on the posts from the right. This mode has
only a y-component of electric field, which is given by

(12)

The previous analysis carried through in this case. Thus,
the electric field scattered in the waveguide is given by (5)
where ¢' through ¢? are now determined by solving the
integral equation

K
sin| —x |e"?
a

_ jwu(q;m(x,z)_(i)zi (e=c,)

T
El= sm(—x)eylz.
Y a

.fﬂ)l(x” Z’)G(x, lel’ Z') ds’),
S

(x,2)eS™, m=1,2,---,p. (13)
The scattering parameters S,, and S, are then given by

Sam -1 ) T (d-e)

ay; I=1

ﬂ ’
-fq)’(x’,z’)sin(—x’)e*lz ds’
s a

(14)
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an
. /[qb’(x’, z') sin(—x’) e M ds’.
s a

IV. THE EQUIVALENT NETWORK

(15)

Let dominant waveguide modes of arbitrary amplitudes
¢; and ¢, be incident on the posts from the left and from
the right, respectively. Far from the posts, only the same
mode can exist. The z-transverse field in the waveguide at
sufficiently large distances can then be written as {12, sec.

8-1]
Vi(z)e z<0
E —
(e, 230 »
I X <0
o [ B
I(z)a,Xe, z>0
In (16)
Via(2) =Vife ™ W + Vi ,en? )
I ,(2) = Ifye " = I e’
where

Vir=mnl=¢q

i =—mly =S +¢,8,
Vi =mly =¢;8y+ ¢85
V, ==ml; =¢,

(18)

are the mode voltages and currents, and

. (W )
e;=sin| —xla
a y

Joop.
m=—
"1

(19)

are the mode vector and characteristic impedance of the
dominant waveguide mode, respectively. .

Let (V}, I,) and (V,, I,) be, respectively, the amplitudes
of (E,, — H,) far to the left and to the right of the posts
extrapolated back to the z =0 plane. It then follows from
(16) through (18) that (V,,V,) and ([, I,) are related to
(¢, ¢,) through the matrix equations

V=(U+sw}

(20)
(U-8)¢

mi,

- C 1 = _ Vl k=4 - I 1
o] w-lp] n-|n] e
and U is the identity matrix. The impedance matrix of the

posts Z is then defined by [15, sec. 5-9]
ZT P I7d'

where

(22)
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Fig. 2. The equivalent network of the posts.

z=0

Consequently

-1_[%u %12
Z=n(U+S)(U-S8) = [221 222} (23)
since ¢ is completely arbitrary.

As can be seen, the effect of the posts on the dominant
waveguide mode at far points can be described by two
transmission lines of characteristic impedance u,. The
voltage and current waves on the transmission lines are
given by (17) and (18) and are produced by voltage genera-
tors with voltages ¢, and ¢, matched to the waveguide. At
z =0, however,

V1,2 = 1,2(0)
11,2 = 11,2(0)

are related by the impedance matrix Z, a fact that mani-
fests itself in the presence of a two-port T-network con-
necting the two lines there. For an incident dominant
mode from the left only, the equivalent network reduces to
that shown in Fig. 2.

=V +V,

—_ 7+ _
_11,2

(24)

Il,2

V. SOLUTION OF THE INTEGRAL EQUATION

The integral equation (8) can be written in the operator
form

y4
V=¢"+ Y, D(¢'),

m=1,2,---,p (25)
I=1
where
1 =
V=—_—s1n(—x)e Nz
Jwu a
w 2
D(¢/)=—(—) (51—() (x,Z)ESm.
o
-flqb’(x’,z’)G(x,zlx’, z') ds’
s

(26)

An exact solution of (25) can be rarely obtained, and an
approximate solution has then to be sought.
Let each C” be approximated by a polygon =™, and put

- K_J AT (27)

where S™ is the polygonal cross section of P™ defined by
X" and A7 denote simplexes (triangles in a two-dimen-
sional space and line segments in a one-dimensional space),
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Fig. 3. Modeling of the posts by simplexes.

as shown in Fig. 3. Put

n

q
"= ) afey.

k=1

(28)

In (28), each ¢7 is a function, yet to be specified, that is
defined on A7 and vanishes on A’;’Z, and « are coeffi-
cients to be determined.

Substituting (28) into (25), there results
r 4
V=aZey+ Y, ¥ aD(¢)+r,

[=1j=1
(x,z) €A, m=1,2,---,p, k=1,2, (29)

The integration in (29) is taken over A rather than §’, and
r is a residual term. A point-matching solution [16, sec.
1-4] is obtained by requiring that

r(xz') =0 (30)
for some (x7, z') € A}. Taking (30) into consideration,
(29) then becomes

ZI=V. (31)

In (31), ¥ and T are p-segment vectors whose mth and /th
segments are, respectively, the ¢” X1 and ¢’ X1 vectors

vr=[vel =[vixz, 2] (32)
I'= [aj’] (33)

and Z is a p X p block matrix whose m/th block is the
g™ X q' matrix

zr=[zp] = (g+p(e))(xp 2] (34

A point-matching solution of (13) can be obtained in a
similar manner. Clearly, using the same functions ¢} for
expansion, there results a matrix equation for the coeffi-
cients of expans1on stmilar to (31), but with — 1z replacing
V, where “ *” denotes complex conjugate.

VI

The evaluation of matrix elements constitutes the major
portion of the work involved in the numerical solution. An
efficient evaluation of the elements of the moment matrix
is therefore necessary for the success of the solution.

EVALUATION OF MATRIX ELEMENTS
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A typical element in the moment matrix is given by
Zy =¢l(xp, )+ W’f & (x', 2)G(xp, zM\x', 2') ds’
4
(35)

where W' is a constant that can be identified from (26),
and <[>j are yet to be specified. A particularly simple choice
for ¢f is

¢ (x,2) = {1 if (x,z) e & ‘ (36)

0 otherwise

which corresponds to a pulse expansion of the polarization
currents. Furthermore, the matching points are taken to be
the centroids of the triangles and /or the midpoints of the
line segments. Thus,
Zr =88+ W’fAIG(x,f‘, zrx, ) ds' (37)
J
where §,; is the Kronecker delta function (one if k= j
and zero if k # j).

The evaluation of the matrix element proceeds by writ-
ing G in the form [1]

887

terms and can therefore be directly summed at a minimal
cost [1].

The evaluation of the matrix element is completed by
integrating the Green’s function, as given by (38), numeri-
cally, where appropriate quadrature rules can be used.
When evaluating any diagonal element, however, the static
component of G, offers a logarithmic singularity that
requires particular attention. Put

GS= GSS+(GS—?GSS) =GS.Y+GSP (41)

where
G (x7, 20"1x', 2')
~ - ton( T (e =+ (op

is the singular part of G,. G,
simplex to give [17]

J, Ges it 21, 2") ds
k

-2 ) (@)

is readily integrated over a

(2] £ 3 et

1
G=G,+G,+G.. (38) +tan~! (—3)) —1.51{) (43)
In (38) /.
Gd(xk,zk |x, Z)— ( x} )s ( )e —jn/alzf —2'|B
T 4
cosh(—(z —z)) cos(—(x,’f+x’))
a a
G (x]", zJ"|x’, z)—~———log 7 77( )
cosh| —(z7'—z cos(— x’"—x’)
(a( )) a' "k (39)
m o mys 1 : m m|ai ™ 1| p—m/alz — 2
Gc(xk,zklx,z)=—;sm(;xk )sm(;x)e £
1 7 [ e a8, gmnn/alzp -2
—7; g sm(n Xy )sm(n;x’) 3 - .
where if A% is a triangle, and
1 T
m\2 2(1 2 m myr d/=_______Lm(1 (_Lm)_])
N=J KZ—(;) =Jj— (T) —1=j_h /A;'G”(x"’zklx’z) 0 27 B 2k T
(44)
2
y, = \/(nZ)Z_ (2= i \/n2 _ ( 2_a) - ZB n>2| if A% is a line segment of length L}'. The quantities in (43)
" a a A a’™ are defined in Fig. 4. G, has no singularity and can

(40)

and “log” denotes natural logarithm. The decomposition
(38) amounts to expressing the dynamic Green’s function
G in terms of a dominant mode wave G, the correspond-
ing static Green’s function G, plus a correction series G..
The correction series is dominated by an exponentially
convergent series of positive monotonically decreasing

therefore be integrated over A} using quadratures.

VIIL

A user-oriented computer code has been written and
applied to a large set of test problems with a wide variety
of post configurations. Only a few of the results obtained
for circular posts free from losses and located in a rectan-

NUMERICAL RESULTS
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Fig. 5. The convergence of the moment procedure for a centered cir-
cular post of diameter d = 0.10a, A =1.4a4.
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Fig. 6. The convergence of the moment procedure for a centered cir-
cular post of diameter d = 0.15a, A =1.4a.

gular waveguide whose medium is the vacuum (e = ¢,) are
given in this section. More results can be found in [18].
The actual computations follow the evaluation steps in
Section VI. The numerical integration is carried out using
third-order closed Silvester quadratures for integration over
simplexes [19]. In a one-dimensional space, they become
the familiar Newton-Cotes quadratures. One of the nodes
for this particular order, however, is located at the centroid
of the simplex, which necessitates a careful evaluation of
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G

s

evaluated as

at this node. At the centroid of A7, G

sp 18 readily

1 a
G, (X7, z0\x, z) = > log(ZSin(;x,'(")). (45)

The scattering parameters and the elements of the equiv-
alent network are basically the quantities to be computed.
In the course of computation, a large array of testing
procedures are conducted. Because of the approximations
involved in the numerical solution, the scattering matrix
need no longer be symmetric, nor is it necessarily unitary
for posts that are free from losses. The unitary condition
has been found satisfied to within an error of magnitude
010~ ) for a double precision arithmetic mode of oper-
ation, while |S,, — S;,| has always been O(10~7). Further-
more, the results obtained compare very well with the data
in the Waveguide Handbook (WGHB) [6] where they are
accurate, i.e., away from any resonances, as can be readily
seen from Figs. 5 and 6. It is interesting to note that the
solution converges rather quickly up to the first resonance
with only a few triangular elements needed. This has been
observed to be true for circular posts of diameter d < 0.15a.
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A reasonably accurate evaluation of the first resonance for
such posts is therefore possible with only about eight
elements. More elements, however, are needed to accu-
rately determine higher-order resonances.

Fig. 7 displays the change of |S;| with ¢, for centered
posts of diameter d = 0.054, 0.1a, 0.154, and 0.204. The
change of |Z,,| with frequency for the same posts is shown
in Fig. 8. The branch reactances for centered posts of
diameter d = 0.054, 0.1a, and 0.15a are plotted versus e,
in Figs. 9 and 10, and versus frequency in Figs. 11 and 12
for a centered post of diameter d = 0.15a4. The change of
[S1:h |82} and |Z,,| for a post of diameter d = 0.15¢ with
location is shown in Fig. 13. Finally, the change of the
scattering parameters and network reactances with
frequency for a symmetric triple-post configuration with
varied diameters is shown in Figs. 14, 15, and 16. In these
figures, €, changes between 2.0 and 200.0 with increments
of 1.0 for A =1.4a, and frequency changes between 1.1f,
and 1.9/, with increments of 0.01f,, for ¢, = 38.0, where
fa 1s the cutoff frequency of the dominant waveguide
mode. Thus, a total of 200 points is included in each curve
in Figs. 5-7, 9, and 10, and a total of 81 points is included
in Figs. 8, 11, 12, and 14-16. Furthermore, a total of 181
points is included in each curve in Fig. 13, the majority of
which are taken close to the waveguide walls.

VIII.

The dielectric posts are very resonant structures. These
resonances are conveniently characterized by the quality
factor of the posts. The quality factor is defined as

RESONANCE

total energy stored inside and outside the posts

= w
total power lost

(46)

In (46), the total power lost is the sum of that due to
heating caused by the nonvanishing conductivity of the
posts and the power carried by the scattered dominant
waveguide mode. The quality factor is therefore a positive
continuous function of all the parameters involved in (46).
The values of any paraméter for which Q is maximum are
called resonances. This definition differs from that ad-
vanced by Richtmyer [20], which considers only the energy
stored inside the posts. The difference is actually in the
interpretation of the meaning of stored energy. The defini-
tion as given in (46) allows using the matrix representa-
tions of the posts since they incorporate the energy stored
inside the posts as well as that stored in the evanescent
higher-order modes outside the posts. The resonances can
then be readily computed from the |Z, | curves in a
manner similar to that which is normally followed in
network theory. As an example, the resonant frequency for
a centered dielectric post of diameter d = 0.154 and dielec-
tric constant e, = 38.0 is readily found from Fig. § to be
1.65f,,. Other parameters can also be determined for this
post. For instance, a bandwidth of 0.11f, and a loaded
quality factor of 15.31 are readily computed. The corre-
sponding numbers for a centered post of diameter d =
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0.20a and the same dielectric constant are 1.21f,, 0.07f,,,
and 17.44, respectively.

Other types of resonance may also occur, namely, branch
resonances. Such resonances can be determined from the
data obtained as well. As a matter of fact, branch reso-
‘nances occur whenever post resonances exist, and at the
same frequency or permittivity, or in the close vicinity of
it. For instance, the series branch for a centered circular
post of diameter d =0.15a is antiresonant at f=1.65f,
and €, =38.0. An examination of Fig. 8 against Fig. 12
further confirms this assertion. Care, however, should be
exercised when identifying the branch resonances. The

reactance X, of the same post shown in Fig. 11 has no.

resonances since it does not obey Foster’s theorem where
the irregularity occurs.

Some of the dielectric posts exhibit frequency filtering
characteristics near resonances. The determination of reso-
nances for different configurations therefore allows for the
design of new types of microwave filters. Equally ith-
portant is the investigation of methods for resonating
nonresonant structures. One method, readily suggested by
the results presented, is to utilize other posts to resonate
nonresonant posts. For instance, a centered circular post
of diameter 4 =0.10a and ¢, = 38.0 is not resonant, but
can be made so by placing two posts of diameter d = 0.05a
and the same dielectric constant symmetrically about it; as
can be seen from Figs. 14 and 15. Because of the typically
low quality factor for the posts, however, such setups may
not be used in filter design as they stand. Methods for
Q-enhancement and filter design using dielectric posts are
the subject of a coming paper.

IX.. SuMMARY

A complete field analysis of a system of dielectric posts
in a rectangular waveguide has been given. A user-oriented
computer program has been written and applied to a large
set of problems with a wide variety of post configurations,
thereby providing a large set of design data that have not
been available before.
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